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CURRENTS IN A NONLINEAR 

We consider the simplest two-dimensional problem of the current distribution in a nonlinear 
conducting medium over a plane wall consisting of a semiinfinite electrode and an insulator. 

In calculating steady electric fields in some media it is necessary to take account of the dependence 
of the electrical conductivity on current. A two-temperature plasma with nonequilibrium ionization is an 
example of such a medium [i, 2]. 

When the conductivity is a given function of coordinates, the electric potential can in principle be deter- 
mined by solving a linear equation of the elliptic type [3]. When the conductivity depends on the current 
density j, the equations of electrodynamics become nonlinear [4, 5], which considerably complicates the 
problem. When the Hall effect can be neglected, these equations can be linearized [5] by a transformation 
in the plane of the hodograph of the vector j. 

When the law of conductivity is nearly linear, for example, at sufficiently small current densities, 
IInearized equations can be used [8]. 

The hodograph method is used to obtain an exact solution for an arbitrary nonlinear law of variation 
of conductivity. Formally the problem is analogous to the gasdynamic problem of the flow past a plate. 
A particular law of variation of conductivity is analyzed. 

i. We consider the motion of an isotropic conducting liquid with a given velocity field V = (u(y), 0, 0) 
at right angles to a constant magnetic field H 0 =(0, 0, H0), H 0 =const. The basic equations of stationary elec- 
trodynamics are 

rot E =0, div j =0 (i.I) 

If the magnetic Reynolds number R m is small, the induced magnetic field can be neglected in Ohm's 
law, so that 

j = ~ (j) (E 27 c-iV • Ho) ~ ~ (j) q (1.2) 

S ince  Eq. (1.2) d e t e r m i n e s  a r e l a t i o n  b e t w e e n  j and q, the  c onduc t i v i t y  ~ can  be  r e g a r d e d  a s  a f u n c -  
t i on  of  q, w h i c h  we  a s s u m e  h e n c e f o r t h .  S ince  ro t (V • H0) =0 fo r  t he  v e c t o r s  V and H 0 a s  de f ined  above ,  
q w i l l  be  a p o t e n t i a l  v e c t o r :  q = - Vg0. A s s u m i n g  t ha t  the  c u r r e n t  f low is  conf ined  to  the  xy  p lane ,  i t  i s  e a s y  
to  ob ta in  f r o m  (1.1) a q u a s i l i n e a r  equa t ion  of t h e  s e c o n d  o r d e r  f o r  ~ :  

(o9)2]o2q) ~ o(p o9 o'9 + t27 (3 2 029 = 0  ~ =  (1.3) 
t +  \Ox/ J ox 2 + 2  q~ Ox oy axoy ~ ~ d lnq /  

T h e  l a s t  equa t ion  can  a l s o  b e  r e w r i t t e n  in  t h e  f o r m  

t -t- - U - ]  ~ + 26 q~ OxO~ 27 \~ c- -~- /  
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In th is  f o r m  the equation will a lso be sa t is f ied  by the flow function r (x, y) whose exis tence is  ensured  
by the second equation of (1.1), so that  jx  = a~/0y, jy = - 0 r  

The  type of Eq. (1.3) is  de te rmined  by the sign of the express ion  A = 1 + 6 (q). The equation will be  
el l ipt ic  for  A > 0 and hyperbol ic  for  A < 0. The cur ren t  dis t r ibut ion cor responding  to the hyperbol ic  r e -  
gion is  unstable  [7]. The condition that  (1.3) be  el l ipt ic  is  given in [5, 7] in t e r m s  of the re la t ion  r =al(J) 
in the f o r m  61 = d lncr/d lnj  < 1. It is  easy  to show that  the l as t  inequali ty is  equivalent  to the  condition 
8 > - 1 .  We note also that  the  region in which (1.3) is  el l ipt ic  co r r e sponds  to the r i s i n g  par t  of the j(q) 
curve ,  and the hyperbol ic  region to the  fall ing par t .  

We tu rn  f r o m  the phys ica l  xy plane to  the plane of the  hedograph of the vec to r  q, taking as  new inde-  
pendent v a r i a b l e s  q and 0 defined by 

q = t(-q~-~ qy2, tg 0 -- % 
qx 

In the plane of the hodograph the flow function ~ sa t i s f i e s  the Linear equation 

0~r _~, + = 0 (1.4) 
. q~ O0 ~ q Oq 

Equation (1.4) is  somewhat  s i m p l e r  than the one sa t i s f ied  by the "potent ial  ~ r (q, 0 ). If  ~b (q, 0 ) i s  a 
known solution of  Eq. (1.4),the t rans i t ion  to the phys ica l  p lane  is  accompl ished  by in tegra t ing the s imple  
l inea r  equations 

O~ d { i  ~Or i OCs,:nO, 
0-7 = ~q Uffq / - ~  ~q Oq 

ou a ( i ) a r  . ~ 0 ,  
0---~'='~ - ~ - F f s : n O + w - - ~ - c o s ~ ,  

-tiff = ~ - T q  cosO ----~q s~nO 

-Yff z oq + ~-~ ~-~0 c~ 

(1.5) 

Af te r  the  functions x (q, 0) and y (q, 0 ) have been found f rom (1.5),they a re  used  to find the inve r se  
functions q (x, y) and 0 (x, y). P e r f o r m i n g  the inve r se  t r an s fo rma t ion  is genera l ly  difficult, but the knowl- 
edge of the functions x (q, 0 ) and y (q, 0 ) p e r m i t s  one to ex t rac t  the bas i c  informat ion  on the c h a r a c t e r  
of  the solution. 

2. An analogy between the equations of s t a t ionary  e l ec t rodynamics  in a nonl inear  medium and the 
equations of potent ia l  flow of a c o m p r e s s i b l e  gas  for  a given dependence of densi ty on ve loc i ty  was noted in 
[5]. T h e r e  a r e  two ways  of compar ing  an e l ec t r i c  cu r ren t  with the flow of a gas.  The f i r s t  way co r r e sponds  
to  the re la t ion  ~(j) and the t rans i t ion  to the plane of the  hodograph of the vec to r  j. The e l ec t r i c - cu r r en t  
l ines  co r respond  to the  equipotential  l ines  in gas  flow. The second way uses  the re la t ion ~(q) mad the t r a n s i -  
t ion t o t h e  plane of the hodograph of the v e c t o r  q. In th is  case  the flow lines of the gas  co r r e spond  to the 
e l e c t r i c - c u r r e n t  l ines ,  conductivity to the densi ty of the gas,  and - 6 to  the square  of the local  Mach number .  

Th is  analogy p e r m i t s  the use  of ce r t a in  gasdynamic  solutions to desc r ibe  the cur ren t  dis t r ibut ion in 
a nonl inear  conducting medium. In th is  case  the main physica l  in te res t  i s  in the  e lec t rodynamic  analogies  
of subsonic  flows. 

Di rec t  ve r i f i ca t ion  shows that  for  an a r b i t r a r y  a(q) the function 

~p (q, O) = kq -~ sin O, k = const > 0 (2.1) 

witl  be  a solution of (1.4). The gasdynamie  solution cor responding  to a flow' function of the type (2.1) is  d i s -  
cussed  by Ringleb [6]. The  in tegra t ion of Eq. (1.5) for  a r of the fo rm (2.1) leads to 

x = r ( q )  cos 20 + a ( q ) , y  = r ( q )  sin 20 

k ~ dq' 
r ( q ) =  2~(q) q~ a ( q ) = r ( q ) - - k  ' z ( q ' )  q,a 

q 

(2.2) 

Additive constants  a re  omit ted  in Eqs. (2.2). Study show, s that  when the el l ipt ici ty condition 1 + 8 (q) > 
0 is  sat isf ied,  the in tegra l  in the express ion  for  a(q) in (2.2) converges  at the upper  l imi t  and d iverges  as 
q -~ 0. Hencefor th  we a s s um e  that  the el l ipt ic i ty  condition is sat isf ied.  
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For  the solution (2.2) the Jacobian of the t ransformat ion  is D(x, y)/D(q, 0) = - k G - t q  -3 (Aces 2 0 + sin20). 
The quantities q and 0 are  single-valued functions of x and y at all points in the physical  plane except the 
origin. 

When 0 = 7r/2 and q va r i es  f rom 0 to ~o the points in the physical  plane range f rom left to right along 
the ray  x < 0, y=0 .  When 0 =0 and q var ies  f rom 0 to ~ , t he  points range f rom right to left along the ray  
x > 0, y =0. There fo re  when y >- 0,Eqs. (2.2) determine the current  distribution in the half-plane bounded 
by a semiinfinite e lectrode and an insulator.  The constant k appearing in the solution can be determined if, 
for  example, the potential difference between the electrode x < 0, y=0  and some point outside this e lec -  
t rode  is specified. 

The level lines of the absolute magnitude of the effective e lec t r ic  field q and of the quantities j and cr 
form a family of c i rc les  of radii r(q) with cen te rs  at the points (a(q), 0). It is easy to see that Iai < r, and 
there fore  for any q the c i rc les  contain the origin. As q --~ co,the quantities a(q) and r(q) approach zero,  so 
that ra ther  large values of the current  density are  concentrated in a small  region covering the end of the 
electrode.  

As an example let us consider  the solution (2.2) corresponding to the following relat ions:  

(q) =~0  -=const (q<q l ) ;  r = o  0(q/q1) ~-, •  (q>/q~) (2.3) 

The corresponding relat ion between a and j has the form 

( ])  - -  % (i < h = ~oq,), ~ ( ] )  - o k i ,  ) ( i  .>I iO 

For  ~ > 0 the last  relat ion is in qualitative agreement  with data presented  in [2] for  a nonequflibrium 
plasma.  Using Eqs. (2.3),we obtain for q as a function of the polar  coordinates p and a of points in the 
physical  plane x= p cos a , y =  p sin 

q (p, ~) = qlr~ (p2 _ 2axp cos a ~ ax2) -'A (p >t. p, (a), 0 < ~ ~< ~) (2.4) 

rx = r (q0, a x = a (qi) = r~• l (2 + x), p, (~) = ]fr-~ -- al 2 sin ~ cr + a. 

The function pi(G) in (2.4) determines the polar equation of a circle on which q =qi- The equations 
determining O(p, ~) have the form 
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0 (p, a) = 1/~ [~ _}_ arc sin (/sin a)] 
/ ( p , ' ~ ) = x / ( 2 + u )  (O<p<p.(a) ,  O<a..<~) 

] (p, a) = [• / (2 + u)] rl (p~ - -  2alp cos ~ + a~) -v~ (p > p. (a), 0 ~< a ~ ~) 
(2.5) 

Analys i s  of (2.4) and (2.5) shows the following. In con t ras t  to the case  of constant e l ec t r i ca l  conduc- 
t ivi ty,  q will be  a function not only of p but also o f ~ ,  with q(p, a)  ~ q(  p, ~ - a ) ;  i .e . ,  the q(x, y) d i s t r ibu-  
t ion becomes  a s y m m e t r i c  about x. Th is  is  the case  a lso  for  an a r b i t r a r y  nonl inear  j(q) re la t ion  c o r r e s p o n d -  
ing to the  region of el l ipt ici ty.  

In us ing  Eqs.  (2.3) the c h a r a c t e r  of the a s y m m e t r i e s  of  the q and j d is t r ibut ions  a re  such that  the va lues  
of  these  quant i t ies  at the  s y m m e t r i c a l  points  M=(x,  y) and M' = ( - x ,  y), where  x > 0, sa t i s fy  the inequali t ies  

q(M) > q (M'), ] (M) > ] (M') (• > O) 
q (M) < q (M'), ] (M) < i (M') (--i < • < 0) 

If 0 < x<  rain (r  1 -  a l ,  r l + a i ) , y = 0 ,  it follows f rom (2.4) that  

q (M) / q (M') = (t ,-{- •247 ] (M) / ] (M') = (i + x) (~§215 
g ( i ) / g  (M') = I + x 

H e r e  g = j q  is  the local  Joule  dissipat ion.  

Thus in the p rac t i ca l l y  in te res t ing  case  when ~ > 0 the va lues  of the effect ive e l ec t r i c  field, the c u r -  
rent  density,  and the local  d iss ipat ion at point M n e a r  the  insu la tor  a re  l a r g e r  than the  va lues  of the c o r r e -  
sponding quanti t ies  a t the  s y m m e t r i c a l  point M' n e a r  the e lect rode.  F igure  1 shows the level  l ines of the 
d imens ion less  cu r ren t  densi ty j* =J/Jl in the plane of the d imens ion less  coordinates  x* = x / r t ,  y*  = y / r  1 fo r  

= 0 (constant conductivity) and ~t = 1. 

As p --~ 0, q and j i nc rea se  as p to the p o w e r - i / ( 2  +~0 and - ( 1  +~) / (2  + ~) respec t ive ly .*  The local  
d iss ipat ion i n c r e a s e s  the same  way as in a l inear  medium:  g ~ 0 -1. 

It i s  c l ea r  f r o m  (2.5) that  for  ~ > 0 the flow l ines i n t e r sec t  an a r b i t r a r y  r ay  a =const  at l a r g e r  angles 
0 than the  cor responding  flow l ines  in a l i nea r  medium.  Consequently the re  is  l e s s  tendency than in the 
l i nea r  case  fo r  the  flow l ines to be  tu rned  along the nonconducting wall.  On the other  hand, when - 1  < x < 0, 
th is  tendency is  i nc reased .  

F igu re  2 shows the fl0w l ines  in the x ' y *  plane for  x =0 and ~ =1. The  p a r a m e t e r  cha rac t e r i z ing  the 
f ami ly  of l ines  i s  the magnitude of the d imens ion less  cu r r en t  i flowing in the tube fo rmed  by  the flow line 
and the nonconducting wall.  

As a r e su l t  of using a "s tab le  w cr(q) re la t ion  in (2.2) t he re  is no region analogous to the region of 
superson ic  flow in the Ringleb solution [6]. Our solution can be used as a quali tat ive es t ima te  of the effect  
of va r ious  laws of nonl inear  conductivity on the end effect  c lose  to the  junction of the e lec t rode  and insulator .  
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