TWO-~-DIMENSIONAL STEADY CURRENTS IN A NONLINEAR
CONDUCTING MEDIUM

I. M. Rutkevich

We consider the simplest two-dimensional problem of the current distribution in a nonlinear
conducting medium over a plane wall consisting of a semiinfinite electrode and an insulator.

In calculating steady electric fields in some media it is necessary to take account of the dependence
of the electrical conductivity on current. A two-temperature plasma with nonequilibrium ionization is an
example of such a medium [1, 2].

When the conductivity is a given function of coordinates,the electric potential can in principle be deter-
mined by solving a linear equation of the elliptic type [3]. When the conductivity depends on the current
density j, the eduations of electrodynamics become nonlinear [4, 5], which considerably complicates the
problem. When the Hall effect can be neglected, these equations can be linearized [5] by a transformation
in the plane of the hodograph of the vector j.

When the law of conductivity is nearly linear, for example, at sufficiently small current densities,
linearized equations can be used [8].

The hodograph method is used to obtain an exact solution for an arbitrary nonlinear law of variation
of conductivity. Formally the problem is analogous to the gasdynamic problem of the flow past a plate.
A particular law of variation of conductivity is analyzed.

1. We consider the motion of an isotropic conducting liquid with a given velocity field V = (u(y), 0, 0)
at right angles to a constant magnetic field H,=(0, 0, Hy), Hy=const. The basic equations of stationary elec-
trodynamics are

rot E =0, div j =0 (1.1)
If the magnetic Reynolds number Ry, is small, the induced magnetic field can be neglected in Ohm's
law, so that
J=c()(E+c'VXH) =5(j)q (1.2)
Since Eq. (1.2) determines a relation between j and ¢, the conductivity o can be regarded as a func-
tion of q, which we assume henceforth., Since rot(V x Hy) =0 for the vectors V and H, as defined above,

q will be a potential vector: =~ V¢. Assuming that the current flow is confined to the xy plane, it is easy
to obtain from (1.1) a quasilinear equation of the second order for ¢:
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The last equation can also be rewritten in the form
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In this form the equation will also be satisfied by the flow fimction ¥ (x, y) whose existence is ensured
by the second equation of (1.1), so that jy= 8¥/9y, jy =—3% /9X.

The type of Eq. (1.3) is determined by the sign of the expression A =1+ §(d). The equation will be
elliptic for A > 0 and hyperbolic for A < 0. The current distribution corresponding to the hyperbolic re-
gion is unstable [7]. The condition that (1.3) be elliptic is given in [5, 7] in terms of the relation o =0¢y(j)
in the form §; = dlno/din j < 1. It is easy to show that the last inequality is equivalent to the condition
6 > —1. We note also that the region in which (1.3) is elliptic corresponds to the rising part of the j(q)
curve, and the hyperbolic region to the falling part.

We turn from the physical xy plane to the planek of the hodograph of the vector g, taking as new inde-
pendent variables q and 9 defined by

¢=Ver o}, o=t

x

In the plane of the hodograph the flow function ¢ satisfies the linear equation

o A48 Py, 1809 P
g ¢ oot T % =0 (1.4)
Equation (1.4) is somewhat simpler than the one satisfied by the "potential® ¢ (q, 6). If ¥(q,0) isa
known solution of Eq. (1.4),the transition to the physical plane is accomplished by integrating the simple
linear equations
dx i
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After the functions x (q,0) and y (¢, 8) have been found from (1.5),they are used to find the inverse
functions ¢ (x, y) and ¢ (%, y). Performing the inverse transformation is generally difficult, but the knowl-
edge of the functions x (q, 8) and y (4, 9 ) permits one to extract the basic information on the character
of the solution.

2. An analogy between the equations of stationary electrodynamics in a nonlinear medium and the
equations of potential flow of a compressible gas for a given dependence of density on velocity was noted in
[5). There are two ways of comparing an electric current with the flow of a gas. The first way corresponds
to the relation o (j) and the transition to the plane of the hodograph of the vector j. The electric-current
lines correspond to the equipotential lines in gas flow. The second way uses the relation o(q) and the transi-
tion tothe plane of the hodograph of the vector q. In this case the flow lines of the gas correspond to the
electric-current lines, conductivity to the density of the gas, and — § to the square of the local Mach number.

This analogy permits the use of certain gasdynamic solutions to describe the current distribution in
a nonlinear conducting medium. Inthis case the main physical interest is in the electrodynamic analogies
of subsonic flows.

Direct verification shows that for an arbitrary o(q) the function
A Y{g, 8) = kg sin 0, & = const >0 (2.1)

will be a solution of (1.4). The gasdynamic solution corresponding to a flow function of the type (2.1) is dis-
cussed by Ringleb [6]. The integration of Eq. (1.5) for a ¢ of the form (2.1) leads to

z=rgcos28 +a(g), y =rg sin 20
°S° dq’ (2.2)

k
r(Q) = 26 (g) ¢’ a(Q) =r (q) -k s(7) g3
q

Additive constants are omitted in Egs. (2.2). Study shows that when the ellipticity condition 1+ 8(q) >
0 is satisfied,the integral in the expression for a(d) in (2.2) converges at the upper limit and diverges as
q —0. Henceforth we assume that the ellipticity condition is satisfied.
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Fig. 2

For the solution (2.2) the Jacobian of the transformation is D(x, y)/D(q, & = —ko "1q-3 (Acos? g + sin’s).
The quantities g and § are single~valued functions of x and y at all points in the physical plane except the
origin.

When ¢ = 7/2 and q varies from 0 fo =, the points in the physical plane range from left to right along
the ray x < 0, y=0. When ¢ =0 and g varies from 0 to «,the points range from right to left along the ray
X > 0, y=0. Therefore when y = 0,Eqgs. (2.2) determine the current distribution in the half-plane bounded
by a semiinfinite electrode and an insulator. The constant k appearing in the soluiion can be determined if,
for example, the potential difference between the electrode x < 0, y=0 and some point outside this elec~
trode is specified.

The level lines of the absolute magnitude of the effective electric field q and of the quantities j and ¢
form a family of circles of radii r(q) with centers at the points (a(g), 0). It is easy to see that |a| < r, and
therefore for any q the circles contain the origin. As g — «,the quantities a(q) and r{g) approach zero, so
that rather large values of the current density are concentrated in a small region covering the end of the
electrode.

As an example let us consider the solution (2.2} corresponding to the following relations:
0(g) =0 =const (g<<q1); 0(g) =0,(q/q)* x>—1 (g=>q) (2.3)
The corresponding relation between ¢ and j has the form

H ‘)x ] {1+%)

S() =0y (<j1=s0)s 6(i)=co<7£" (>

For w > 0 the last relation is in qualitative agreement with data presented in [2] for a nonequilibrium
plasma. Using Egs. (2.3),we obtain for q as a function of the polar coordinates p and « of points in the
physical plane x= p cos ¢,y = p sin «

T T -1/(2+x) /0
g(p, ) =q [‘;I?:—&EF (Vrd—asin®a — aycosa)] ' {0222{;{a))
g (0, @) = gl (0 — 2ap cos@ + ) (o3>0, (@), O<a W @-4)
n=r{q), a=a(q)=rx/2+x) 0 =Vri—alsina+ @

The function p *(a) in (2.4) determines the polar equation of a circle on which g=q;. The equations
determining #{p, o) have the form
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8 (p,a) =, [a +arc sin (fsin g)]
fl oy =%/QR+% 0<p<o, (@), 0<agn (2.5)
Flp, @) = [/ (2 +%)]r (0 — 2410 030+ 6" (o0, (a), 0Sagm)

Analysis of (2.4) and (2.5) shows the following. Tn contrast to the case of constant electrical conduc-
tivity, q will be a function not only of p but also of @, with q(p, &) # q(p, 7 —a); i.e., the q(x, y) distribu-
tion becomes asymmetric about x. This is the case also for an arbitrary nonlinear j(g) relation correspond-
ing to the region of ellipticity.

In using Eqs.(2.3) the character of the asymmetries of the q and j distributions are such that the values
of these quantities at the symmetrical points M~=(x, y) and M*=(—x, y}, where X > 0, satisfy the inequalities

M) > q (M), j (M) > j (M) (x>0)
g (M) < g(M"), j(M)y<<j(M) (—1<x0)

If 0< x< min (ry— a4, ry+ay),y=0, it follows from (2.4) that

q(lw)/ q (M') o (1 + M)l/(ﬁ-l-k)' ](M) /i (M') o (1 + %)(1+x)[(2+x)
g(M)g(M')y=1+n

Here g=jq is the local Joule dissipation.

Thus in the practically interesting case when w > 0 the values of the effective electric field, the cur-
rent density, and the local dissipation at point M near the insulator are larger than the values of the corre-
sponding quantities atthe symmetrical point M* near the electrode. Figure 1 shows the level lines of the
dimensionless current density j* =j/j; in the plane of the dimensionless coordinates x*= x/ry, y* =y/r; for
« =0 (constant conductivity) and « =1.

As p= 0, q and j increase as p to the power —1/(2 +w) and —(1+n)/(2 +n) respectively.* The local
dissipation increases the same way as in a linear medium; g ~ p~i,

It is clear from (2.5) that for » > 0 the flow lines intersect an arbitrary ray o =const at larger angles
¢ than the corresponding flow lines in a linear medium. Consequently there is less tendency than in the
linear case for the flow lines to be turned along the nonconducting wall, On the other hand, when ~1<n <0,
this tendency is increased.

Figure 2 shows the flow lines in the x*y* plane for # =0 and v =1. The parameter characterizing the
family of lines is the magnitude of the dimensionless current i flowing in the tube formed by the flow line
and the nonconducting wall,

As a result of using a "stable® o(q) relation in (2.2) there is no region analogous to the region of
supersonic flow in the Ringleb solution [6]. Our solution can be used as a qualitative estimate of the effect
of various laws of nonlinear conductivity on the end effect close to the junction of the electrode and insulator.
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